FRFAM.COM >> Science >> Santé

Comment résoudre un problème d'énergie à partir de la longueur d'onde

Cet exemple de problème montre comment trouver l'énergie d'un photon à partir de sa longueur d'onde. Pour ce faire, vous devez utiliser l'équation d'onde pour relier la longueur d'onde à la fréquence et l'équation de Planck pour trouver l'énergie. Ce type de problème est une bonne pratique pour réorganiser les équations, utiliser les unités correctes et suivre les chiffres significatifs.

Conseils à retenir :trouver l'énergie des photons à partir de la longueur d'onde

  • L'énergie d'une photo est liée à sa fréquence et à sa longueur d'onde. Elle est directement proportionnelle à la fréquence et inversement proportionnelle à la longueur d'onde.
  • Pour trouver l'énergie à partir de la longueur d'onde, utilisez l'équation d'onde pour obtenir la fréquence, puis branchez-la dans l'équation de Planck pour résoudre l'énergie.
  • Ce type de problème, bien que simple, est un bon moyen de s'entraîner à réorganiser et à combiner des équations (une compétence essentielle en physique et en chimie).
  • Il est également important d'indiquer les valeurs finales en utilisant le nombre correct de chiffres significatifs.

Problème d'énergie à partir de la longueur d'onde - Énergie du faisceau laser

La lumière rouge d'un laser hélium-néon a une longueur d'onde de 633 nm. Quelle est l'énergie d'un photon ?

Vous devez utiliser deux équations pour résoudre ce problème :

La première est l'équation de Planck, qui a été proposée par Max Planck pour décrire comment l'énergie est transférée en quanta ou en paquets. L'équation de Planck permet de comprendre le rayonnement du corps noir et l'effet photoélectrique. L'équation est :

E =hν


E =énergie
h =constante de Planck =6,626 x 10 J·s
ν =fréquence

La deuxième équation est l'équation d'onde, qui décrit la vitesse de la lumière en termes de longueur d'onde et de fréquence. Vous utilisez cette équation pour résoudre la fréquence à brancher sur la première équation. L'équation d'onde est :
c =λν


c =vitesse de la lumière =3 x 10 m/sec
λ =longueur d'onde
ν =fréquence

Réorganisez l'équation à résoudre pour la fréquence :
ν =c/λ

Ensuite, remplacez la fréquence dans la première équation par c/λ pour obtenir une formule que vous pouvez utiliser :
E =hν
E =hc/λ

Autrement dit, l'énergie d'une photo est directement proportionnelle à sa fréquence et inversement proportionnelle à sa longueur d'onde.

Il ne reste plus qu'à saisir les valeurs et obtenir la réponse :
E =6,626 x 10 J·s x 3 x 10 m/sec/ (633 nm x 10 m/1 nm)
E =1,988 x 10 J·m/6,33 x 10 m E =3,14 x J
Réponse :
L'énergie d'un seul photon de lumière rouge provenant d'un laser hélium-néon est de 3,14 x J.

Énergie d'une mole de photons

Alors que le premier exemple montrait comment trouver l'énergie d'un seul photon, la même méthode peut être utilisée pour trouver l'énergie d'une mole de photons. Fondamentalement, ce que vous faites est de trouver l'énergie d'un photon et de la multiplier par le nombre d'Avogadro.

Une source lumineuse émet un rayonnement d'une longueur d'onde de 500,0 nm. Trouver l'énergie d'une mole de photons de ce rayonnement. Exprimez la réponse en unités de kJ.

Il est typique de devoir effectuer une conversion d'unité sur la valeur de la longueur d'onde afin de la faire fonctionner dans l'équation. Tout d'abord, convertissez nm en m. Nano- vaut 10, donc tout ce que vous avez à faire est de déplacer la décimale sur 9 décimales ou de diviser par 10.

500,0 nm =500,0 x 10 m =5 000 x 10 m

La dernière valeur est la longueur d'onde exprimée en notation scientifique et le nombre correct de chiffres significatifs.

Rappelez-vous comment l'équation de Planck et l'équation d'onde ont été combinées pour donner :

E =hc/λ

E =(6,626 x 10 J·s)(3,000 x 10 m/s) / (5,000 x 10 m)
E =3,9756 x 10 J

Cependant, il s'agit de l'énergie d'un seul photon. Multipliez la valeur par le nombre d'Avogadro pour l'énergie d'une mole de photons :

énergie d'une mole de photons =(énergie d'un seul photon) x (nombre d'Avogadro)

énergie d'une mole de photons =(3,9756 x 10 J)(6,022 x 10 mol) [indice :multipliez les nombres décimaux, puis soustrayez l'exposant du dénominateur de l'exposant du numérateur pour obtenir la puissance de 10)

énergie =2,394 x 10 J/mol

pour une mole, l'énergie est de 2,394 x 10 J

Notez comment la valeur conserve le nombre correct de chiffres significatifs. Il doit encore être converti de J en kJ pour la réponse finale :

énergie =(2,394 x 10 J)(1 kJ / 1000 J)
énergie =2,394 x 10 kJ ou 239,4 kJ

N'oubliez pas que si vous devez effectuer des conversions d'unités supplémentaires, faites attention à vos chiffres significatifs.

Origine

  • French, A.P., Taylor, E.F. (1978). Une introduction à la physique quantique . Van Nostrand Reinhold. Londres. ISBN 0-442-30770-5.
  • Griffiths, D. J. (1995). Introduction à la mécanique quantique . Prentice Hall. Upper Saddle River NJ. ISBN 0-13-124405-1.
  • Landsberg, P. T. (1978). Thermodynamique et mécanique statistique . Presse universitaire d'Oxford. Oxford Royaume-Uni. ISBN 0-19-851142-6.

[]